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1. Preliminaries

1.1 Semisimplicity. Let R be any ring. Then R is left artinian if
it has the DCC for left ideals, that is, for each decreasing sequence
of left ideals

L1 ⊇ L2 ⊇ L3 ⊇ · · ·

there exists an integer N ≥ 1 for which

LN = LN+1 = LN+2 = · · ·
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A left ideal L of R is maximal if L 6= R and there is no left ideal J
with L ⊂ J ⊂ R.

The Jacobson radical J(R) of a ring R is the intersection of the
maximal left ideals of R.

A left ideal L of R is minimal if L 6= 0 and there is no left ideal J
with 0 ⊂ J ⊂ L.

A ring R is left semisimple if it is a direct sum of minimal left
ideals.
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Proposition 1. A ring R is left semisimple if and only if every left
ideal of R is a direct summand as a left R-module.

Proof. See [12, Theorem 8.42]. 2

Proposition 2 (Maschke). Let G be a finite group and let K be
a field whose characteristic does not divide |G |. Then the group
ring KG is a left semisimple ring.

Proof. Use Proposition 1. 2
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Proposition 3. A ring R is left semisimple if and only if it is left
artinian and J(R) = 0.

Proof. See [12, Theorem 8.45]. 2

Corollary 4. Let G be a finite group and let K be a field whose
characteristic does not divide |G |. Then J(KG ) = 0.
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Proposition 5. (Wedderburn-Artin) A ring R is left semisimple
if and only if it is isomorphic to the direct product of matrix rings
over division rings.

Proof. See [12, Theorem 8.56]. 2
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1.2 Commutator Ideals. Let K be a field, let A be a finite
dimensional K -algebra. Let [A,A] denote the ideal of A generated
by the set of commutators xy − yx for x , y ∈ A. The abelian part
of A is the quotient K -algebra Aab = A/[A,A].

For example, [Matn(K ),Matn(K )] = Matn(K ), for n ≥ 2, hence
Matn(K )ab = 0, for n ≥ 2.

Lemma 6. Let A, B be K -algebras. Then (A× B)ab ∼= Aab × Bab.

Proof. One has (A× B)ab = (A× B)/[A× B,A× B] =
(A× B)/([A,A]× [B,B]) ∼= Aab × Bab. 2
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Lemma 7. Let L/K be a finite field extension. Then
L⊗K Aab

∼= (L⊗K A)ab.

Proof. Since L is a flat K -module, the short exact sequence
0→ [A,A]→ A→ Aab → 0 yields the short exact sequence
0→ L⊗K [A,A]→ L⊗K A→ L⊗K Aab → 0. We have
L⊗K [A,A] = [L⊗K A, L⊗K A]. It follows that

L⊗K Aab
∼= (L⊗K A)/(L⊗K [A,A])

= (L⊗K A)/[L⊗K A, L⊗K A] = (L⊗K A)ab.

2

Lemma 8. Let G be any finite group, and let KG be the group
ring over K . Let G ab = G/[G ,G ], where [G ,G ] is the commutator
subgroup of G . Then (KG )ab ∼= KG ab.

Proof. One has (KG )ab = KG/[KG ,KG ] = KG/K [G ,G ] ∼= KG ab.
2
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2. Greither-Pareigis Theory

2.1 The Basics. Let L/K be a Galois extension with group G .
Let H be a finite dimensional Hopf algebra over K .

Then L is an H-Galois extension of K if L is an H-module
algebra and the K -linear map

j : L⊗K H → EndK (L),

given as j(a⊗ h)(x) = ah(x) for a, x ∈ L, h ∈ H, is bijective.

If L is an H-Galois extension for some H, then L is said to have a
Hopf-Galois structure via H.
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Example 9 (Classical Hopf-Galois Structure). Let L/K be a
Galois extension with group G. Let KG be the group ring K-Hopf
algebra. Then L is a KG-Galois extension of K; L admits the
classical Hopf-Galois structure via KG.

But are there other Hopf-Galois structures on L/K?
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Let Perm(G ) denote the permutation group of G . Let λ(G )
denote the image of the left regular representation

λ : G → Perm(G ), λ(g)(g ′) = gg ′

of G in Perm(G ). Then λ(G ) ≤ Perm(G ). Let ρ(G ) denote the
image of the right regular representation

ρ : G → Perm(G ), λ(g)(g ′) = g ′g−1

of G in Perm(G ). Then ρ(G ) ≤ Perm(G ).

A subgroup N ≤ Perm(G ) is normalized by λ(G ) if λ(G ) is in the
normalizer of N in Perm(G ).

A subgroup N ≤ Perm(G ) is regular if |N| = |G | and

StabN(g) = {l ∈ N : l(g) = g} = 1, ∀g ∈ G .
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Proposition 10 (Greither-Pareigis [8]). Let L/K be a Galois
extension with group G with n = [L : K ]. There is a one-to-one
correspondence between Hopf-Galois structures on L/K and
regular subgroups of Perm(G ) that are normalized by λ(G ).

One direction of this result works as follows.

Let N be a regular subgroup of Perm(G ) normalized by λ(G ).
Assume that G acts on LN by as the Galois group on L, and by
conjugation via λ(G ) on N. Denote this action by “·”.

Let
H = (LN)G = {x ∈ LN : g · x = x ,∀g ∈ G}.
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Then H is an n-dimensional K -Hopf algebra and L has a
Greither-Pareigis Hopf Galois structure via H, hereafter
referred to as a Hopf Galois structure via H.

One consequence is that

H ⊗K L ∼= KN ⊗K L ∼= LN,

that is, H is an L-form of KN.

So to find Hopf Galois structures on L/K we look for regular
subgroups of Perm(G ) normalized by λ(G ).

In this way the search for Hopf Galois structures has been reduced
to a problem in group theory.
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Example 11. It is known that ρ(G ) is a regular subgroup of
Perm(G ) normalized by λ(G ). In this case

H = (Lρ(G ))G = Kρ(G ) ∼= KG ,

and the corresponding Hopf-Galois structure on L is the classical
Hopf Galois structure.

Example 12. It is known that λ(G ) is a regular subgroup of
Perm(G ) normalized by λ(G ). Assume that G is non-abelian, and
let

H = (Lλ(G ))G .

Then L/K has a non-classical Hopf-Galois structure via H.
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3. Counting Results

Let L/K be Galois with group G . We review various results that
count the number of Hopf Galois structures on L/K . It is enough
to count the number of regular subgroups of Perm(G ) normalized
by λ(G ).

3.1 The Case |G | = p, p prime. In this case, G = Cp. If N is any
regular subgroup of Perm(G ), then |N| = |G | = p, and so N ∼= Cp.

This case is settled by a result of Childs [5].

Proposition 13 (Childs). Let L/K be a Galois extension with
group Cp. Then L/K has a unique Hopf Galois structure, namely
the classical Hopf Galois structure.

In other words, there is exactly one regular subgroup
N = ρ(Cp) ≤ Perm(Cp) normalized by λ(Cp) = ρ(Cp).
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3.2 The Case |G | = p2. In this case, G is abelian and either
G = Cp2 or G = Cp × Cp.

This case is handled by a result of Byott [3].

Proposition 14 (Byott). If G = Cp2 , then there are p Hopf Galois
structures on L/K. If G = Cp × Cp, then there are p2 Hopf Galois
structures on L/K.

In other words, if G = Cp2 , there are exactly p regular subgroups
N ≤ Perm(Cp2) normalized by λ(Cp2), and if G = Cp × Cp, there
are exactly p2 regular subgroups N ≤ Perm(Cp × Cp) normalized
by λ(Cp × Cp).
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3.3 The Case |G | = pq, p > q. If p 6≡ 1 mod q, then G = Cpq,
and if p ≡ 1 mod q, then either G = Cpq, or G = Cp o Cq.

Proposition 15. If p 6≡ 1 mod q, then L/K has exactly one Hopf
Galois structure, namely the classical Hopf Galois structure.

Proof. Note that gcd(pq, φ(pq)) = 1, and so, pq is a Burnside
number. Thus by Byott [2], L/K has a unique Hopf Galois
structure. 2

Proposition 16 (Byott). Assume p ≡ 1 mod q. If G = Cpq, then
there are 2q − 1 Hopf Galois structures on L/K. If G = Cp o Cq,
then there are 2 + p(2q − 3) Hopf Galois structures on L/K.

Proof. See [4], [11, Theorem 4.1]. 2
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4. The Structure of H = (LN)G .

Let N be a regular subgroup of Perm(G ) nomalized by λ(G ). Let
H = (LN)G be the K -Hopf algebra acting on the Hopf-Galois
extension L/K (H is a Greither-Pareigis Hopf algebra). We
ultimately want to study the structure of H as both a K -algebra
and a K -Hopf algebra.

To this end, we state the following results.

Proposition 17. Let G(H) denote the set of grouplike elements in
H. Then G(H) = N ∩ ρ(G ).

Proof. See [10, Corollary 1.3]. 2
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Let N, N ′ be regular subgroups of Perm(G ) normalized by λ(G ).
An isomorphism of groups φ : N → N ′ is λ(G )-invariant if

φ(x · n) = x · φ(n)

for all x ∈ λ(G ), n ∈ N.

Proposition 18. Suppose φ : N → N ′ is a λ(G )-invariant
isomorphism of groups. Then (LN)G ∼= (LN ′)G as K-Hopf
algebras.

Proof. By linearity, φ extends to an L-Hopf algebra isomorphism
(also denoted by φ), φ : LN → LN ′. Let

∑
rini ∈ (LN)G . Then for

all x ∈ G , φ(
∑

rini ) = φ(x ·
∑

rini ) = x · φ(
∑

rini ), and so, φ
restricts to an injection φ : (LN)G → (LN ′)G . Since
dimK ((LN)G ) = dimK ((LN ′)G ), φ is a bijection, and hence an
isomorphism of K -Hopf algebras. 2
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Proposition 19. Suppose L/K is an H-Galois extension for some
finite dimensional K-Hopf algebra H = (LN)G arising from the
Greither-Pareigis construction of Proposition 10. Assume
char(K ) = 0. Then H is left semisimple.

Proof. We know that H is an L-form of KN, that is,
H ⊗K L ∼= KN ⊗K L = LN. Since LN is left semisimple,
J(H ⊗K L) = 0. By [1, Theorem 1], J(H)⊗K L = 0. Since L is
faithfully flat over K , the map H → H ⊗K L ∼= LN, given as
h 7→ h ⊗ 1 is an injection. Consequently, J(H) injects into
J(H)⊗K L = 0, thus J(H) = 0, and so, H is left semisimple by
Proposition 3. 2
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Recall that, if H is a Greither-Pareigis Hopf algebra, then

H ⊗K L ∼= KN ⊗K L ∼= LN,

that is, H is an L-form of KN.

For N ∼= C4, N ∼= C6, Haggenmüller and Pareigis [9, Theorem 6]
have characterized all of the Hopf algebra forms of KN.
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Proposition 20 (Haggenmüller-Pareigis). Let c , s be
indeterminates. The Hopf algebra forms of KC4 are

H = K [c , s]/(s2 − asc − bc2 + u, c(ac − 2s)).

The Hopf algebra forms of KC6 are

H = K [c, s]/(s2 − asc − bc2 + u, (c − 2)(c − 1)(c + 1)(c + 2),

(c − 1)(c + 1)(sc − 2a)).

In both cases, a, b ∈ K, u ∈ K×, with a2 + 4b = u. Moreover,
these forms are split by K [x ]/(x2 − ax − b).

Proof. See [9]. 2
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5. Examples: |G | = n, 2 ≤ n ≤ 6

In what follows, we fix the base field K = Q. For various Galois
extensions L/Q with group G , 2 ≤ |G | ≤ 6, we compute the
Greither-Pareigis Hopf algebras H = (LN)G , as Q-algebras, and as
Q-Hopf algebras.

By Proposition 19, all H are left semisimple.

5.1 Case |G | = 2. In this case G = C2, and L/Q is a quadratic
extension. By Proposition 13, L/Q has only the classical Hopf
Galois structure via H = QC2. The Wedderburn-Artin
decomposition is

H ∼= Q×Q.
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5.2 Case |G | = 3. In this case G = C3, and L/Q is a cubic
extension. By Proposition 13, L/Q has only the classical Hopf
Galois structure via H = QC3. The Wedderburn-Artin
decomposition is

H ∼= Q×Q(ζ3),

where ζ3 is a primitive 3rd root of unity.

One can construct a collection of irreducible cubics whose Galois
groups are C3. For any integer m, let b = m2 + m + 7, and let
p(x) = x3 − bx + b. Then p(x) is irreducible over Q and the
Galois group of the splitting field L/Q is C3. See [6, Corollary 2.5].
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5.3 Case |G | = 4. This is the first case where it gets interesting.
If G = C4, then by Proposition 14, there are 2 Hopf Galois
structures on L/Q, and if G = C2 × C2, there are 4 Hopf Galois
structures on L/Q.

We only consider the case G = C2 × C2, here. Specifically, we let
L/Q be the splitting field of the irreducible quartic
p(x) = x4 − 10x2 + 1, that is, L = Q(

√
2,
√

3) = Q(
√

2 +
√

3).

L/Q is Galois with group C2×C2 = {1, σ, τ, τσ} with Galois action

σ(
√

2 +
√

3) =
√

2−
√

3, τ(
√

2 +
√

3) = −
√

2 +
√

3.
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Of the corresponding 4 regular subgroups of Perm(C2 × C2)
normalized by λ(C2 × C2), one M1 = ρ(C2 × C2) = λ(C2 × C2) is
isomorphic to C2 × C2, while three, N1, N2, N3, are isomorphic to
C4.

Explicitly, with 1 := 1, 2 := σ, 3 := τ , 4 := τσ,

M1 = λ(C2 × C2) = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}

N1 = {(1), (1, 3, 2, 4), (1, 2)(3, 4), (1, 4, 2, 3)}

N2 = {(1), (1, 4, 3, 2), (1, 3)(2, 4), (1, 2, 3, 4)}

N3 = {(1), (1, 2, 4, 3), (1, 4)(2, 3), (1, 3, 4, 2)}.
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Now, M1 corresponds to the classical Hopf Galois structure on
L/Q, hence A1 = (LM1)C2×C2 ∼= Q(C2 × C2), and the
Wedderburn-Artin decomposition is

A1
∼= Q×Q×Q×Q.

We next treat the Ni . Let B1 = (LN1)C2×C2 .

Proposition 21. Let c, s be indeterminates. Then
B1 = Q[c , s]/(s2 − 2c2 + 8,−2sc).

Proof. As one can check

{x ∈ λ(C2×C2) : x ·n = n, ∀n ∈ N1} = {(1), (1, 2)(3, 4)} = {1, σ}.

There is an induced action of (C2 × C2)/{1, σ} on LN1. By the
fundamental theorem of Galois theory, (C2 × C2)/{1, σ} ∼= C2 is
the group of the Galois extension E1/Q, E1 = Q(

√
2) (the fixed

field of {1, σ} is E1). And so, there is an induced action of
(C2 × C2)/{1, σ} on E1N1.
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Now, (C2 × C2)/{1, σ} ∼= C2 can be viewed as the group of
automorphisms of N1

∼= C4. Since L is a B1-Galois extension of Q,
E1 is a C2-Galois extension of Q in the sense of [9, page 130]. We
have

B1 = (LN1)C2×C2 = (E1C4)C2 ,

and so, by [9, Theorem 5], B1 is a E1-(Hopf algebra) form of QC4.
Since E1 = Q[x ]/(x2 − 2), Proposition 20 applies to yield
B1 = Q[c , s]/(s2 − 2c2 + 8,−2sc). 2
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We want the Wedderburn-Artin decomposition of
B1 = Q[c , s]/(s2 − 2c2 + 8,−2sc). In B1, c3 = 4c , and so, there
are three mutually orthogonal idempotents:

1

4
c +

1

8
c2, −1

4
c +

1

8
c2, 1− 1

4
c2.

Moreover, since s2 − 2c2 + 8 = 0 implies that( s
2

)2
= −2

(
1− 1

4
c2
)
,

B1
∼= Q×Q×Q(

√
−2).

Robert G. Underwood Department of Mathematics and Computer Science Auburn University at Montgomery Montgomery, AlabamaThe Structure of Greither-Pareigis Hopf Algebras



Next, let
B2 = (LN2)C2×C2 , B3 = (LN3)C2×C2 .

In a similar manner, one obtains

B1 = Q[c , s]/(s2−3c2+12,−2sc), B2 = Q[c , s]/(s2−6c2+24,−2sc),

and
B2
∼= Q×Q×Q(

√
−3).

B3
∼= Q×Q×Q(

√
−6).
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5.4 Case |G | = 5. In this case G = C5, and L/Q is a quintic
extension. By Proposition 13, L/Q has only the classical Hopf
Galois structure via H = QC5. The Wedderburn-Artin
decomposition is

H ∼= Q×Q(ζ5),

where ζ5 is a primitive 5rd root of unity.

For example, let p(x) = x5 + x4 − 4x3 − 3x2 + 3x + 1. Then p(x)
is the minimal polynomial for ζ11 + ζ−111 . The splitting field L/Q is
Galois with group C5.
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5.5 Case |G | = 6. Note that 6 = 3 · 2 with 3 ≡ 1 mod 2, and so,
by Proposition 16, there are 3 Hopf Galois structures on L/Q if
G = C6, and there are 5 Hopf Galois structures on L/Q if
G = C3 o C2 = S3.
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We only consider the case G = S3, here. Specifically, let L be the
splitting field of x3 − 2 over Q. Let ω denote a primitive 3rd root
of unity and let α = 3

√
2.

Then L = Q(α, ω) is Galois with group S3 = 〈σ, τ〉 with
σ3 = τ2 = 1, τσ = σ2τ . The Galois action is given as σ(α) = ωα,
σ(ω) = ω, τ(α) = α, τ(ω) = ω2.

By Proposition 16, there are 5 Hopf Galois structures on L/Q. But
since the corresponding regular subgroups N ≤ Perm(S3) satisfy
|N| = |S3| = 6, we conclude that some of the N may be
isomorphic to S3, and some may be isomorphic to C6.
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In fact, by a result of Kohl [11], of the 5, there are 2 regular
subgroups isomorphic to S3, namely, M1 = ρ(S3) and M2 = λ(S3),
and 3 regular subgroups isomorphic to C6, namely, N1, N2 and N3.

We compute the structure of the corresponding Greither-Pareigis
Hopf algebras in turn.
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Proposition 22. Let A1 = (LM1)S3 = (Lρ(S3))S3 ∼= QS3. Then A1

is left semisimple as a ring. Its Wedderburn-Artin decomposition is

A1
∼= Q×Q×Mat2(Q).

Proof. By Proposition 2, A1 is left semisimple with decomposition

A1
∼= Matn1(D1)×Matn2(D2)× · · · ×Matnl (Dl),

for integers ni and division rings Di , 1 ≤ i ≤ l .
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By Lemma 8, (A1)ab ∼= QC2 since S3/[S3,S3] ∼= C2.

Hence (A1)ab ∼= Q×Q, and so,

A2
∼= Q×Q× R,

where dimQ(R) = 4 and one of the following cases must hold:

1) R = S × T , where S , T are division rings with
dimQ(S) = dimQ(T ) = 2,

2) R = S , where S is a division ring with dimQ(S) = 4,

3) R = Mat2(Q).
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However, as one check, QS3 contains the non-zero nilpotent
element a = σ − σ2 + τ − τσ, a2 = 0.

Thus the first two cases are impossible, for if a = (a1, a2, a3, a4)
with a1, a2 ∈ Q, a3 ∈ S , a4 ∈ T , as in 1), then
0 = a2 = (a21, a

2
2, a

2
3, a

2
4) = (0, 0, 0, 0), thus a = 0.

A similar agrument shows that 2) cannot happen either. Thus

A1
∼= Q×Q×Mat2(Q).

2
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Proposition 23. Let A2 = (LM2)S3 = (Lλ(S3))S3 . Then A2 is left
semisimple as a ring. Its Wedderburn-Artin decomposition is

A2
∼= Q×Q×Mat2(Q).

Proof. By Proposition 19, A2 is left semisimple with decomposition

A2
∼= Matn1(D1)×Matn2(D2)× · · · ×Matnl (Dl),

for ni and Di .

Robert G. Underwood Department of Mathematics and Computer Science Auburn University at Montgomery Montgomery, AlabamaThe Structure of Greither-Pareigis Hopf Algebras



We have L⊗Q A2
∼= LS3, thus dimL((L⊗Q A2)ab) = 2, by Lemma

8.

Now, by Lemma 7, dimQ((A2)ab) = 2. Thus the decomposition is

A2
∼= Q × R,

where Q is a 2-dimensional commutative Q-algebra and R is a
4-dimensional non-commutative Q-algebra.

To determine Q, note that

(A2)ab = ((LM2)S3)ab = ((LM2)ab)S3 ∼= (LC2)S3 = QC2,

since [S3, S3] is a normal subgroup of S3, that is,
[S3,S3]S3 = [S3,S3]. Thus Q = Q×Q, so that

A2
∼= Q×Q× R.
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So it remains to determine R.

To this end, note that either case 1), 2), or 3) holds exactly as in
the proof of Proposition 22. But since A2 contains the non-trivial
nilpotent element b = ατ + αωτσ + αω2τσ2, b2 = 0, the only
possibility is case 3): R = Mat2(Q). Thus

A2
∼= Q×Q×Mat2(Q).

2
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Proposition 24. A1 and A2 are isomorphic as Q-algebras, but not
as Q-Hopf algebras.

As shown above, both A1 and A2 have the same Wedderburn-Artin
decomposition, thus A1

∼= A2 as Q-algebras.

On the other hand, by Proposition 17,
G(A1) = M1 ∩ ρ(S3) = ρ(S3), while G(A2) = M2 ∩ ρ(S3) = {1}.
Thus A1 6∼= A2 as Hopf algebras. 2

Robert G. Underwood Department of Mathematics and Computer Science Auburn University at Montgomery Montgomery, AlabamaThe Structure of Greither-Pareigis Hopf Algebras



Proposition 25. Let Bi = (LNi )
S3 , for i = 1, 2, 3. Then Bi ,

i = 1, 2, 3, are in the same isomorphism class as Q-Hopf algebras,
and hence as Q-algebras.

Proof. We show there exists a λ(S3)-invariant isomorphism
between any two Bi , and then apply Proposition 18.

To this end, with 1 := 1, 2 := σ, 3 := σ2, 4 := τ , 5 := τσ,
6 := τσ2, we have

λ(S3) = 〈(1, 2, 3)(4, 6, 5), (1, 4)(2, 5)(3, 6)〉 ,

and
N1 = 〈(1, 6, 2, 5, 3, 4)〉 ,

N2 = 〈(1, 4, 2, 6, 3, 5)〉 ,

N3 = 〈(1, 5, 2, 4, 3, 6)〉 .
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For each i = 1, 2, 3,

λ(S3) ∩ Ni = 〈(1, 2, 3)(4, 6, 5)〉 ,

is the unique 3-Sylow subgroup of both λ(S3) and Ni .

Now,
N1 = 〈(1, 2, 3)(4, 6, 5)(1, 5)(2, 4)(3, 6)〉 ,

N2 = 〈(1, 2, 3)(4, 6, 5)(1, 6)(2, 5)(3, 4)〉 ,

N3 = 〈(1, 2, 3)(4, 6, 5)(1, 4)(2, 6)(3, 5)〉 .

Define a map φ : N1 → N2 by the rule

(1, 2, 3)(4, 6, 5)(1, 5)(2, 4)(3, 6) 7→ (1, 2, 3)(4, 6, 5)(1, 6)(2, 5)(3, 4).

Then as one can check φ is a λ(S3)-invariant isomorphism. In a
similar manner, there is a λ(S3)-invariant isomorphism between N1

and N3. 2
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So we need only to consider B1.

Proposition 26. Let c , s be indeterminates. Then B1 = Q[c , s]/I ,
with

I = (s2+sc+c2−3, (c−2)(c−1)(c+1)(c+2), (c−1)(c+1)(sc+2)).

Proof. As one can check {x ∈ λ(S3) : x · n = n,∀n ∈ N1} is
precisely the 3-Sylow subgroup 〈(1, 2, 3)(4, 6, 5)〉 which we can
identify with the commutator subgroup [S3, S3].

There is an induced action of S3/[S3,S3] on LN1. By the
fundamental theorem of Galois theory, S3/[S3,S3] ∼= C2 is the
group of the Galois extension K = Q(ω)/Q (the fixed field of
[S3,S3] is Q(ω)). And so, there is an induced action of S3/[S3,S3]
on KN1.
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Now, S3/[S3, S3] ∼= C2 can be viewed as the group of
automorphisms of N1

∼= C6. Since L is a B1-Galois extension of Q,
K is a C2-Galois extension of Q in the sense of [9, page 130]. We
have

B1 = (LN1)S3 = (KC6)C2 ,

and so, by [9, Theorem 5], B1 is a K -(Hopf algebra) form of QC6.

Since K = Q[x ]/(x2 + x + 1), Proposition 20 applies to yield
B1 = Q[c , s]/I , with

I = (s2+sc+c2−3, (c−2)(c−1)(c+1)(c+2), (c−1)(c+1)(sc+2)).

2
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Proposition 27. Let B1 = (LN1)S3 . Then B1 is left semisimple as
a ring. Its Wedderburn-Artin decomposition is

B1
∼= Q×Q×Q×Q×Q×Q.

Proof. Observe that B1 is left semisimple by Proposition 19.

The ideal I determines an affine variety in Q2 consisting of exactly
six points:

P1 = (−2, 1),P2 = (−1, 2),P3 = (1, 1),

P4 = (2,−1),P5 = (1,−2),P6 = (−1,−1),

This is the set of common zeros of the polynomials in I .
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The graphs of the equations

s2 + sc + c2 − 3 = 0

(c − 2)(c − 1)(c + 1)(c + 2) = 0

(c − 1)(c + 1)(sc + 2) = 0

are:
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We construct a collection of six mutually orthogonal idempotents
in B1. Consequently, B1 has the claimed form.

With respect to the set of monomials {1, c , c2, s, sc , sc2}, assume
that

ej = a1,j + a2,jc + a3,jc
2 + a4,js + a5,jsc + a6,jsc

2,

ai ,j ∈ Q, is an idempotent for 1 ≤ j ≤ 6.

There exist evaluation homomorphisms ΨPi
: B1 → Q, 1 ≤ i ≤ 6.

We have ΨPi
(ej) = δi ,j for 1 ≤ i , j ≤ 6.
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This yields the linear system Ayj = bj , where

A =



1 −2 4 1 −2 4
1 −1 1 2 −2 2
1 1 1 1 1 1
1 2 4 −1 −2 −4
1 1 1 −2 −2 −2
1 −1 1 −1 1 −1

 , yj =



a1,j
a2,j
a3,j
a4,j
a5,j
a6,j

 ,

and bj is the jth standard basis element for Q6 (in column form).
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Using GAP [7], one computes yj = A−1bj , where

A−1 =



−1/6 1/3 1/3 −1/6 1/3 1/3
0 −1/6 1/3 0 1/6 −1/3

1/6 −1/6 0 1/6 −1/6 0
−1/6 1/3 0 1/6 −1/3 0

0 −1/6 1/6 0 −1/6 1/6
1/6 −1/6 1/6 −1/6 1/6 −1/6

 ,

and so the idempotents are

e1 =
(c − 1)(c + 1)(s + 1)

6
, e2 =

−(c − 1)(c + 2)(s + 1)

6

e3 =
(c + 1)(sc + 2)

6
, e4 =

−(c − 1)(c + 1)(s − 1)

6

e5 =
(c − 2)(c + 1)(s − 1)

6
, e6 =

−(c − 1)(sc + 2)

6
2
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We used the GAP [7] command ReducedGroebnerBasis to verify
that these are indeed idempotents. For example, to show that
e21 = e1 in B1 = Q[c , s]/I , we ran

gap> I:=[s^2+s*c+c^2-3,(c-2)*(c-1)*(c+1)*(c+2),

(c-1)*(c+1)*(sc+2)];

gap> ReducedGroebnerBasis(I,MonomialLexOrdering ( ));

[s^4-5*s^2+4,c*s^2+1/2*s^3-c-1/2*s,c^2+c*s+s^2-3]

gap> e1:=1/6*(c^2-1)*(s+1);

gap> J:=[s^2+s*c+c^b2-3,(c-2)*(c-1)*(c+1)*(c+2),

(c-1)*(c+1)*(sc+2),e1^2-e1];

gap> ReducedGroebnerBasis(J,MonomialLexOrdering ( ));

[s^4-5*s^2+4,c*s^2+1/2*s^3-c-1/2*s,c^2+c*s+s^2-3]

Thus e21 − e1 ∈ I .
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The following table summarizes the case G = S3 where L/Q is the
splitting field of x3 − 2, with Galois group S3:

Iso. Wedderburn- Hopf Alg. Iso.
N ≤ Perm(S3) Class Artin for (LN)S3 Class of (LN)S3

M1 = ρ(S3) S3 Q2 ×Mat2(Q) [QS3]
M2 = λ(S3) S3 Q2 ×Mat2(Q) [(LM2)S3 ] 6= [QS3]

N1 = 〈(1, 6, 2, 5, 3, 4)〉 C6 Q6 [(LN1)S3 ]
N2 = 〈(1, 4, 2, 6, 3, 5)〉 C6 Q6 [(LN1)S3 ]
N3 = 〈(1, 5, 2, 4, 3, 6)〉 C6 Q6 [(LN1)S3 ]
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